Laser Triangulation Sensors

Laser triangulation sensors can be divided into two categories based upon their performance and intended use. High-resolution lasers are typically used in displacement and position monitoring applications where high accuracy, stability and low temperature drift are required. Quite frequently these laser sensors are used in process monitoring and closed-loop feedback control systems. Proximity type laser triangulation sensors are much less expensive and are typically used to detect the presence of a part, or used in counting applications.

Products Utilizing Laser Triangulation Sensors

ProTrak™ 2D 3D

The ProTrakTM 2D 3D laser sensor series are ideal for quality control and production applications such as metal or plastic welding, 3D material inspection, component alignment, tire depth, angle measurements

View Product

Microtrak™ 3

The Microtrak™ 3's high resolution, high-speed laser displacement sensor (non-contact linear displacement sensor) utilizes the latest CMOS sensor technology that challenges even the most difficult measurement applications.

View Product

Microtrak™ 4

The Microtrak™ 4 is the best laser sensor for measuring height, thickness, displacement, vibration and more. It provides data output and power through a single USB cable.

View Product

Applications

Position Sensing

General positioning is the most common application for laser sensors. Their fast, highly linear response makes them ideal for both static and active feedback positioning applications. Large operating distance and measurement range provides the flexibility for process and quality control monitoring. Typical applications include:

  • Pavement and concrete road profiling
  • Railroad track alignment
  • Robot location
  • Welding head position

Lead position and pitch on integrated circuits

Closed loop control of robotic and positioning systems

Dynamic Measurements

Non-contact sensors are ideal for measuring moving targets because they have high frequency response and do not dampen target motions by adding mass. Our laser sensors are designed with a 40 kHz sampling frequency and a true 20 kHz frequency response, making them ideal for high speed applications such as:

  • Spindle run-out analysis
  • Piezoelectric characterization
  • Ultrasonic vibration measurements
  • In-line process monitoring

Vacuum seal integrity for canning industry

Surface profile of a wide variety of materials

Thickness and Dimensional Measurements

On-line production thickness measurements have conventionally been made using direct contact type measurement systems. Sensors, such as LVDT's, are positioned above and below the material being measured to track surface position. The sensor outputs are combined through software or a summing device and thickness is determined. Unfortunately, contact type methods cause measurement problems. Not only can the material being measured be damaged but sensor wear also occurs. In addition, contact sensors are slow and may not properly track targets that may move or vibrate, making these applications ideal for our laser systems.

Single sided thickness measurements are possible if one side of the material can be held constant against a fixed reference plane, however, for best results, two sided measurements are preferred. This is because a two-sided approach eliminates any errors that might be introduced from the material moving or vibrating. Our two-sensor approach synchronizes the data sampling for both sensors, which ensures a correct thickness reading. This type of system provides both analog (0-10V), (4-20 ma) and digital outputs (RS-485 binary format). Either can be used to provide thickness results, but analog is the preferred choice if high frequency (>100Hz) thickness is required.

Successful applications include:

Sheet and web thickness

Key Advantages

  • The ability to resolve measurements below one micron, at a fraction of the cost of other high performance technologies
  • A large measurement range is that allows for a variety of application requirements
  • A large operating distance that provides sufficient standoff to reduce possible damage from contacting the moving target

How Laser Triangulation Sensors Work

Laser triangulation sensors contain a solid-state laser light source and a PSD or CMOS/CCD detector. A laser beam is projected on the target being measured and a portion of the beam is reflected through focusing optics onto a detector. As the target moves, the laser beam proportionally moves on the detector.

The signal from the detector is used to determine the relative distance to the target. This information is then typically available through an analog output, a digital (binary) interface or a digital display for processing.

Laser triangulation principle

Differences between CMOS/CCD and PSD sensors

CMOS and CCD type sensors detect the peak distribution of light quantity on a sensor pixel array to identify target position, whereas, PSD type sensors calculate the beam centroid based upon the entire reflected spot on an array. Because of this, PSD type sensors are more susceptible to spurious reflections from changing surface conditions, which can reduce their accuracy. However, when measuring to ideal matte finishes or specular targets their resolution is unmatched. CCD and CMOS systems are typically more accurate over a wider variety of surfaces because only the highest charged pixels from the reflected beam are used to calculate position. The lower charged pixels are usually energized by unwanted reflections from changing optical properties of the surface being measured and can easily be ignored during signal processing. This allows them to be used in a wider variety of applications. Figure 2 show the signal distribution difference between CMOS and PSD technology, highlighting the potential accuracy problem associated with PSD type sensors.

Potential errors induced by PSD type laser sensor

Applicable on highly reflective or mirror surfaces

Laser triangulation sensors can also be used on highly reflective or mirror surfaces, commonly referred to as specular surfaces. With these surfaces the typical triangulation sensor, as shown in the Laser Triangulation Principle, can't be used because the laser light would bounce directly back into itself. For these cases it's necessary to direct the beam to the target at an angle. The beam will reflect from the target at an equal but opposite angle and focus onto the detector. We manufacture laser heads specifically designed for specular surfaces or any of our lasers can be mounted at an angle and operated in the "specular mode" if necessary.

Operating principle of a specular laser head

Characteristics of Laser Triangulation Sensors

Non-contact

Laser displacement sensors are non-contact by design. That is, they are able to precisely measure the position or displacement of an object without touching it. Because of this, the object being measured will not be distorted or damaged and target motions will not be dampened. Additionally, laser displacement sensors can measure high frequency motions because no part of the sensor needs to stay in contact with the object, making them ideal for vibration measurements or high-speed production line applications.

Range/Standoff Distance

Laser triangulation systems have an ideal operating point, which is sometimes referred to as the standoff distance. At this point, the laser is at its sharpest focal point and the reflected spot is in the center of the detector. As the target moves, the spot will move toward the ends of the detector allowing for measurements over a specific range. Both the range and standoff of a sensor are determined by its optical design. Optimal performance is obtained at the standoff distance because the spot is smallest at its focal point and highly concentrated on the detector. Detection algorithms correct for any inaccuracies caused when operating slightly out of focus and most manufacturers specify performance over the complete measurement range.

For a given length detector a smaller acceptance angle offers a larger measurement range and operating distance. A larger angle provides the opposite, however, higher sensitivity can be obtained because of optical leveraging.

This simplified diagram visualizes the difference between two different acceptance angle sensors

Sensitivity

In measurement systems, sensitivity is usually defined by how much displacement occurs per unit of measurement, typically expressed in microns/milli-volt. The higher the sensitivity (depicted with a lower number) the better in most cases because greater resolution may be obtained. To achieve the highest sensitivity, it's ideal to have the laser beam traverse across the complete detector length over the application measurement range. Sensitivity is determined by the slope of the sensor output response.

The output of two sensors with different sensitivities is depicted in the graph. Please note that the slope of each curve represents the respective sensitivity factor with Curve A being twice as sensitive.

Resolution

The resolution of a laser displacement sensor is defined as the smallest amount of distance change that can be reliably measured. When properly designed, laser triangulation sensors offer extremely high resolution and stability, often approaching that of expensive and complex laser interferometer systems. Because of their ability to detect such small motions they have been successfully used in many demanding, high-precision measurement applications.

The primary factor in determining resolution is the system's electrical noise. If the distance between the sensor and target is constant, the output will still fluctuate slightly due to the white noise of the system. It is assumed that, without external signal processing, one cannot detect a shift in the output of less than the random noise of the instrument. Because of this, most resolution values are presented based on the peak-to-peak value of noise and can be represented by a specific formula:

Resolution = Sensitivity x Noise

Based on the formula, it's evident that for a fixed sensitivity the resolution is solely dependent upon the noise of the system. The lower the noise the better the resolution.

The amount of noise depends on the system's bandwidth. This is because noise is generally randomly distributed over a wide range of frequencies and limiting the bandwidth with filtering will remove some unwanted higher frequency fluctuations.

Our laser sensors also provide displacement values in digital formats. Digital output resolution is calculated by dividing the displacement range by the processor bit rate. For example, a sensor with a 2000 micron range would have a resolution of 2000/2E16, or 0.03 microns for a 16 bit system. If using a 12 bit converter the resolution would be worse at 2000/2E12, or 0.5 microns.

The figures below show the difference in the output of two identical systems with different low pass filters. All of our laser triangulation systems have software adjustable low pass filters for easy adjustment in the field.

Amplifier output noise with 20kHz low pass filter

Amplifier output noise with 100Hz low pass filter

Bandwidth

The bandwidth, or cutoff frequency, of a system is typically defined as the point where the output is dampened by -3dB. This is approximately equal to an output voltage drop of 30% of the actual value. In other words, if a target is vibrating with an amplitude of 1mm at 5kHz, and the bandwidth of the laser sensor is set at 5 kHz, the actual output would be 1mm X 70% = 0.70mm. So, it is important to set the system's frequency response higher than the expected target motion. All of our laser sensors have adjustable filter settings. The appropriate filter should be selected for the application to prevent any attenuation of the output. Our application engineers can assist in selecting the appropriate filter settings.

Spatial Resolution

When taking measurements, laser sensors provide a distance approximately equal to the average surface location within the laser spot. They are not capable of accurately detecting the position of features smaller than the size of the spot, however, they can repeatedly measure to rough surfaces. Because of this, the laser spot should always be approximately 25% smaller than the smallest feature you are trying to measure. Smaller spots can distinguish smaller features on an object.

Linearity

In an ideal world, the output from any sensor would be perfectly linear and not deviate from a straight line at any point. However, in reality there will be slight deviations from this line, which define the system linearity. Typically, linearity is specified as a percentage of the Full Scale Measurement Range (FSR). During calibration, the output from the laser head is compared to the output of a highly precise standard and differences are noted. These differences are automatically corrected for through the use of look up tables. Our Microtrak II laser sensors offer the highest linearity available today. Most systems exceed +/-0.05% FSR with some achieving +/-0.01% or better.

Accuracy is a function of linearity, resolution, temperature stability and drift, with linearity being the major contributor. The linear response of our sensors is very repeatable. Calibration reports provide data that can be used to correct for the non-linearity of a system with inexpensive computers and correction software, resulting in improved accuracy if needed.

Applying Laser Triangulation Sensors

Material and Finish

When applying a laser sensor, it is first necessary to determine the surface reflectivity. A consistent matte finish is desirable for best performance when using diffuse heads. If a highly polished or mirror finish will be used, we strongly recommend a specular laser head.

Target Shape

For ideal performance, the target should be positioned at 90 degrees to the laser head to prevent tilt errors. The influence from the tilt will be dependent on the surface reflective properties. An ideally diffuse target will allow proper operation on surfaces tilted 30 degrees or more from normal. However, a mirror target will produce errors if the tilt changes by as little as 1 degree. Care should be taken during fixture design and operation to minimize any target tilt.

Laser sensors can also be used to measure curved targets. For best results, the beam should be positioned facing directly toward the center of the curvature. This will virtually eliminate any tilt seen by the laser. In addition, the orientation of the head should be such that the curved surface does not skew the laser triangulation angle.

The figure below shows the proper orientation for a system to reduce tilt effects. Note how the laser beam may be deflected by target shape.

Be aware of your target's features before measuring to ensure the laser's return light is not obstructed. The figure below shows the right and wrong way to orientate a laser sensor.

Environmental Conditions

Because laser triangulation systems are optical type sensors it is important to keep the optical path clean and free from obstructions or foreign materials. Dirt, dust and smoke can affect the measurement results or even render sensors completely useless. Care should be taken to eliminate such contamination and clean air purge systems should be used when required. If this type of system is not possible it is important to regularly clean the outer lenses to avoid complications.

The most common environmental problem that can affect the accuracy of a laser sensor is temperature. Not only do the electronics exhibit temperature drift, but also expansion and contraction of mechanical components and fixturing can physically change the sensor gap. All of our Microtrak II sensors have a temperature stability of less than +/-0.05% of the full scale measurement range over a temperature change of 0 to 40oC.

Fixturing

It is important that the fixture holding a laser triangulation sensor is stable. Considering that temperature changes can cause expansion and contraction, resulting in a distance change to the target, fixtures should be made of the appropriate material to minimize this effect. The fixture supports should also be as short as possible and long cantilevers should be avoided to minimize not only temperature issues but to also reduce vibration.

Our laser sensors have through holes that can be used to mount and secure the laser heads. Fixtures should be made to match the location of these holes and maintain the laser head perpendicular to the target of interest.

Synchronization

When making differential thickness measurements with 2 laser heads it is important to take and process measurements from both heads at the exact same time. This procedure eliminates unwanted results brought on by vibration. If the target is moving, and measurements are taken at slightly different times, the processed results may report a slightly thinner or thicker target. Our Microtrak II line of laser sensors has provisions to synchronize heads eliminating this problem.